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1. I have reviewed the Final Report by Pacific Sierra Research
Corporation , titled PROPAGATION OF THE LOW FREQUENCY GROUNDWAVE

• OVER NONUNIFORM TERRAIN . The report describes work performed
under contract to RADc/EEP, and represents the product of that
work.

2. The report describes the analysis of errors associated
with various formulations which mathematically describe the
propagation of low frequency waves over the earth’s surface.
Each of the errors is quantified , and the types of terrain
to which the integral ground—wave equation is applicable are
defined . A method of numerical solution is developed and used
to obtain results for the special case of a smooth, uniform,
spherical earth. The results of this study apply directly to
in—house efforts being conducted by the Propagation Branch (EEP )
to support the ESD LORAN SPO ’ s requirement for an extremely
accurate means of predicting LF groundwave propagation parameters.

3. All aspects of the work contracted for by RADC/EEP have been
completed and described in the subject report by Pac . Sierra
Res. Corp., and meets the approval of this office. The efforts
by Pacific Sierra have resulted in information of importance to
our understanding of the prop4gation of long radio waves over
non—uniform terrains.

Paul A. Kossey, /x4f65
Contract Monitor
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• SUMMARY

This report exam g.nes the utility and limitations of the integral—
equat ion representation of ground—wave propagation over nonuniform
terrain. Emphasis is on frequencies between 20 kliz and 200 kHz . The

one—dimensional version of the integral ground—wave equation is subj ect
to errors caused by: 1) topographic irregularities near the great—circle
propagat iun path; 2) finite ground conductivity; 3) nonuniformities in
the earth’s electrical properties; 4) an approximate integration to
reduce the dimension of the equation from two to one. Each of these
errors is quantif ied, and the types of terrain to which the integral
ground—wave equation is applicable are defined.

A method of numerical solution is developed and used to obtain
results for the special case of a smooth , unif orm, spherical earth.

• These results are compared in detail with numerical, results obtained
• from the widely used residue-series representation of ground— wave

propagation. The agresment between the two methods is shown to be

• excellent. Graphical results are given for the ground—wave attenuation

function.
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I • INTRODUCTION

The propagation velocity of low—frequency groundwaves is subject to
• perturbations from nonuniforrnities in either the topographic or electrical

properties of the terrain. A sufficiently accurate theory of propaga—
tion over irregular terrain would, in principle, make it possible to
correct position errors that such velocity perturbations caus e on low—
frequency radio navigation systems.

• Historically, two theoretical treatments of groundwavs propagation
have evolved: the residue series of Van der Pol, Bre er, Norton, and
Pock (see e.g. ,  Brsziinsr, 1958) ; and the integral equation approach (see
e.g., Hufford, 1952; and Fainb.rg, 1959) . The residu. series , being
more amenable to analytic s~lution, has been the foundation of most pre-
vious results. However, although useful for analysis of propagation
over a uniform—or a piecewise uniforln*_earth, the residue series is
awkward for analysis of propagation over continuously varying terrain.
For the latter conditions, numerical solution of the integral ground—
wave equation appears the most fruitful approach.

The integral equation is based on impedance boundary conditions,
which are approximate. Therefore , regardless of the numerical accuracy
of its solution, the classical version of the integral equation cannot
provide accuracy better than that inherent in the impedance boundary
condition . Beyond implementation of these boundary conditions, a number
of additional approximations are usually made , with the result that the
cornput.ationai.ly simplest versions of the relevant equations are subject

• to the most stringent conditions on the types of terrain to which they
are applicable.

Accordingly, a main purpose of this report is to quantify the accuracy
of several forms of the integral ground—wave equation, thereby ascertain—
ing the types of terrain to which they may be used to within specified
error tolerances. Attention is restricted to frequencies between 20 kHz

and 200 Hz , especially to the LORAN—D frequency at 100 kHz. The approach

*• _ _ _ _ _ _ _ _ _

example of a piecewise uniform earth would be two or more uniform
regions separated by an abrupt boundary, such as shoreline.
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taken is to derive expressions for errors due to the approximate treat-
ment of 1.) f init, earth conductivity , 2) terrain curvature, and 3) non—
uniformities in electrical properties . These error terms arise in two
p laces in the derivation of the one—dimensional form of the integral
equation: 1) use of Impedance boundary conditions ; 2) use of the method
of stationary phases, or something nearly equival ent , to perform an
integration over the coordinate transverse to the great—circle propaga-
tion path , thereby reducing a two—dimensional equation to a one—dimensional
equation.

Use of impedance boundary conditions is essential to the derivation
of the classical integral equation , and the resulting inaccuracies must
be considered inherent to the formulation. The reduction from a two—

dimensional to a one—dimensional integral equation , however , is a
simplification that could be forgone at the expense of an order—of—
magnitude increase in difficulty in obtaining numerical solutions. To
determine when such an increase in difficulty would indeed provide a
co ensurate increase in overall accuracy, we compare the error terms
due to the approximate transverse integration with the ones due to the
impedance boundary conditions.

Section II gives the relevant versions of the integral ground—wave

equation, and rank—orders the various error terms , which are derived in
Appendices A and 3. Section III gives numerical results comparing two
versions of the one—dimensional integral equation with each other and
with the residue series. Section IV presents conclusions; Appendix C
derives the integral equation in polar coordinates for a smooth, round

earth; and Appendix D outlines the procedures used to obtain numerical

solutions.
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II. INTEGRAL EQUATIONS FOR. GROUNDWAVE PROPAGATION

We begin by outlining the steps required to derive the classical

one—dimensional integral equation of Ruf ford (1952).  Although the final

result is simply the well—known Eq. (11) of Hufford’s original paper ,

• the intermediate steps reveal somewhat more general forms. Moreover,

we identify the points at which critical approximations are made , end
quantify the accuracy of these approximations. Finally, we give a form
of the integral equation that is somewhat more accurate than Huf ford ’s
for the special case of a smooth , round earth.

HUPPORD’ S EQUATION
Although awkward for the special conditions of a smooth, round earth ,

rectangular coordinates (x ,y, z) are the most convenient when the shape
of the earth’s surface cannot be given a simple analytic form. We assume

1) that the transmitter is located at the origin, and let C(x,y) denote
the deviation of the earth’s surface from the plane z—O; and 2) that
the receiver is located in the vertical plane, y — 0. Below, we also use
an integration point , Q, which is on the earth’s surface and has coordina-
tes x,y,~ (x ,y) ,  and a receiver point, P, with coordinates x

0
,C(x

0
). Other

quantities used below are r0, r1, and r2, which are straight—line dis-
tances between the origin and P, the origin and Q, and Q and P, respec?
tivei.y . (Appendix B gives expressions for r

0
, r1, and r2.)

The refractive index of the earth, flgb is given by

— K + ia/~c0 , (1)

where K is the dielectric constant of the earth , a is the conductivity of

the earth , ~j  is the angular frequency of the wave, and is the vacuum

dielectric permitivity . All parameters in Eq. (1) can be spatially non-
uniform, although the validity of the forthcoming equations depends on

• 
• these nonuniformities falling within constraints given below.

For certain smooth, symmetric surfaces, (e.g., planes or spheres),

the Hertz potential for a vertical electric dipole has only a sing_ a
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component oriented normal to the surface. In such instances, only three
(E ,E ,H ) field components are excited that can be calculated from a
single potential. function, 4~. For arbitrary rough surfaces, the Hertz

vector is not oriented in the normal direction, and all six field com-
ponents are excited. To avoid this complexity, the derivation of the
integral ground—wave equation is based on the assumption that the surface
is “so smooth” that the Hertz vector is composed of essentially a single
component oriented in the z direction.

Quantification of the error involved in this approximation is dif-
ficult. Intuitively, one would expect it to be valid provided the in—
clinations of the earth’s surface with respect to its average level are
small. More rigorously , if y is the angle between the a axis and the
normal to the earth’s surface, tne error will be roughly the amount by
which

cosy — _ _ _ _ _ _ _ _ _ _ _ _  

• (2)

differs from unity.
Subject to the error given by Eq. (2), ~Is satisfies the wave equation

(V2+k2)* — , (3)

where r is the source function , k is the free—space wave number, and a
—iwt• time dependence e has been assumed .

• The second major approximation is use of impedance boundary con—
ditions, which can be stated in the form

~~~— —Lk6* (4)

• where it is the upward normal to the earth’s surface and

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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6~~~ l/Ug (5)

provided that flg is large. The accuracy of the impedance boundary con—
dition (discussed in detail in Appendix A) is susm~arized below. Use of
the impedance boundary conditions is essential to the derivation. It

permits 3$/3n to be expressed in terms of ‘P on the surface, which, in
turn, permits use of Green ’s Theorem to convert Eq. (3) to an integral

*• equation involving integration over the earth’s surface. The procedure ,
described by Ruf ford , gives the result

— 2*0
(P) + jkJ

’
~
2
~*(Q) 

e
’
~~
2 

[~+(i+~_)~ J , (6)

• where *0 is the potential that would exist ii the earth were not present.
By letting

I

e
— Const.

and defining W by

*(Q) — 2W(Q)’P0(Q)

we find

W(P) — 
jkJ’

d2QW(Q)rp ik(r
1+r2—r )[ ( L ) ~zI .

*More accurate, albeit much more complicated , versions of Eq. (4) can
be derived from th. results of Rytov (1940) .

_ _ _ _ _ _ _ _ _ _ _ _ _  _ __ _ __ _ _  ~~•- • •~~~~~~~~~~~~ - ~~~~~~—-~~~~~ .• • • • - .—--
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In Eq. (7) , W is an attenuation function that accounts for the fact that
the earth is not flat and does not have inf inite conductivity. Note
that W — 1 if j  — 0 (0 — —) and 3r 2/an — 0.

Equation (7) is the most general form of the integral equation, being

subj ect only to the limitations of the impedance boundary conditions and

the assumption of gentle departures from a plane earth. Being a two—

dimensional integral equation , however , Eq. (7) is quite expensive to

solve numerically. A major simplification (carried out in Appendix B)

transforms—subject to some restrictions—Eq. (7) into a one—dimensional

integral equation. Formally, this transformation involves using the

method of stationary phases to perform analytically the integration over

the coordinate transverse to the propagation path. Physically, this

transformation implies that only regions within the first Fresnel zone

significantly affect the received signal. The resulting equation is

W(~~) l_ e
~~

/4[
~ ] f 4 x (~ _x)1 W (x)(6 # ar 2/~n)e 1 2 0 ,

which is the classic form derived by Hufford (1952) .

• ACCURACY OP RUPPORD’S EQUATION
• Equation (8) is an order—o f -magnitude simpler to solve than Eq. (7),
• but is less accurate because of errors incurred in the approximate trans-

verse integration. It is therefore important to quantify the accuracy

of these equations to determine whether Eq. (7) is sufficiently more

accurate (or more general ) than Eq. (8) to warrant the considerabl e

additional computational complexity . Moreover , it is important to esta-

blish the limitations on Eqs . (7) and (8) , thereby determin!~~ th. types

of terrain to which each may be applied to achieve some specified accuracy .

Accordingly, Table 1 si ar izes the first -order correction terms to each

of the main app roximations . These correction terms (derived in Appendices
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A and B) denote the order of magnitude of the errors* involved in each
approximation. In Table 1, denotes the local radius of curvature of

the boundary.

Table 1

ACCURACY OP l4kIN IIPPROXIM&TIONS

Approximation Fractional Error

I. Hertz vector normal to surface (~r~/~x)2 + (~Cf~y) 2

LI. Impedance boundary conditions
a. Finite conductivity wc0lo

b. Surface curvature

c. Nonuniform conductivity [1T1~)of ~~h1f 2 [1.}!.]

III. Stationary phase integration

a. Stationary point at y —  0 (9~ /ay) 2
J y _ 0

b. Asymptotic series 
• 1/km0

Table 1. shows that errors due to use of 1) impedance boundary con-
ditions for finitely conducting media (lIe) and of 2) the asymptotic
expans ion of the stationa ry phas. integration (Ilib) are the most funda-

mental in the sense that they are nonzero even for a. plane , uniform earth.
The other error terms depend on the degree of terrain nonuniformity.

A simple conclusion regarding the relative accuracy of approximations

h a  and 11Th cannot be made , because one depends on ground conductivity,
whereas the other depends on the length of the propagation path . Table
Al (p. 30) gives numerical values for the term 11*, and shows that better
than 1—percent accuracy is obtained at LI/VIP provided that a > ~~~ mhos/m.

Roughly speaking, the percentage error associated with each approxi ma-
tion can be estimated by multiplying the fractional errors of Table 1 by 100. 

• —--- ~~~~-- -- -i — •• - •~~~~~~ •-~~~— - -- ~~~~— —--~•-- ~—~~--— — —-- -~~
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Poor accuracy is obtained for Greenland ice, i.e., where a ~ 1O~~ altos/ia.
If the stationary—phase error—term Ilib is less than the impedance error—
term h a , no degradation in accuracy (for a plane earth) is caused by
the transformat ion of Eq. (7) to Eq. (8), and any additional accuracy
achieved by solving the two—dim ensiona l equa t ion would be spurious . Con-
versely , if the ter m IlIb exceeds 11*, additional accuracy is obtained

• by dealing with the complexity of the two-dimensional equation. Comparison
of these terms shows that the stationary phase integration causer no sub-

stantial degradation in accuracy provided that x0 exceeds a characteristic
distance, L, given by

• t —~~~~~~~~~~ . (9)

Table 2 gives t for various conductivities and a frequenc y of 100 kRz .

These results show that if the conductivity is LO~~ altos/a or less, the
one—dimensional integral equation is essentially as accurate as the two—
dimensional equation , provided that the pazhlength exceeds about 100 km.
For a conductivity of io—2 mhos/m, the two—dimensional equation is more
accurate than the one—dimensional one, unless the pathlength exceeds
about 900 km. For seawater (a — 4 altos/a), the two—dimensional equation

is far more accurate than the one—dimensional one for all realistic path—
lengths.

Table 2

VALUES OF t AT 100 kEz FOR SEVERAL CONDUCTIVITIES

a (mhos/m) 4 io 2 l0~~ *

L (km) 3.5 x 10~ 8.6 x io2 90 0.9

I

~~ . iir ~~~~~~~~~~~~~~~~~~ 
• - - • - -

_ _ _ _  —
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Before evaluating the other expressions in Table 1, note that their
deriva t ion involves power series expansions, and that these expanCiona
are valid only when their magnitude is less than unity. Caution must
also be exercised in interpreting the error—term I for a spherical earth .
For a smooth , round earth , it is easy to show that

(ap /ax) 2 
+ (3p/ 3y) 2 — 

(xis) 
, (10)

l—(x/a )

which correctly indicates that Eq. (8) becomes very inaccurate as the pro—
pagation pathlength , x, approache s an earth radius, a. This unnecessary
inaccuracy , however, is du. to Hufford ’s treatment of the earth’s curvature
as a perturbation to a plane earth. The situation is remedied by deriving
the integral equation in spherical coordinates (Appendix C and below) ,
which causes the appropriate Hertz vector to be rigorously normal to the
surface for a smooth, round earth. Thus , the proper interpretation
of such error terms as I. and lila should treat C as the departure of the
terrain contour from the average surface contour of the earth; i.e. , C
should include hills, etc., but not the earth’s curvature , which can be
accurately accounted for.

For a frequency of 100 kHz , Table £2 (p. 31) shows that errors due to
surf&ce curvature (expression h a  in Table 1) are about an order-of—

magnitude greater than those due to finite conductivity (expression hIb),
for couduc t ivities of l0~~ altos/a or more, and — 1 km. For — 100 a,
the error terms due to curvature effects exceed 10 percent for normal
ground conductivities. Nontheless, in this case, it is better to account
for hills via Eqs. (7) or - (8) than to leave the. out of the analysis
entirely. Note that by setting — a in expression lib, it follows that

• th. impedance error caused by normal earth curvature is extremely small .
For Greenland ice, the results of Appeudi~ A show that errors due

to finite conductivity effects at 100 kEz are so large that discussion
of other error sources is academic • We do not have adequ ate data to
evaluate th. term ItIc, which accounts for nonuniforaities in conductivity.

_ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~- - ~~~~- -—~~~~ --~~~~~~~~~ - -~~~-_~~~~~~~ - - _ - -
~~~~~~~~~~~~~— _ - ~~~~~~~~~~~

- •- ~~~~
-

~~~~~—
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It is easily shown, by evaluating expressions I or lila, that errors
caused by terrain gradients should be less than 1 percent for grades of
5 percent or less, and less than 10 percent for grades of 15 percent or
less • Much steeper grades would essentially totally destroy the accuracy

of either Eq. (7) or Eq. (8).

In st~~ary, for very smooth terrain where the error terms (Table 1)

I, hib, c, and Ella are much smaller than the terms h a  and hhib, the
two—dimensional integral equation is much more accurate than the one—
dimensional equation only for ground conduetivities of io 2 altos/rn or
more. For much lower ground conductivities , th. accuracy of the impedance
bounda ry conditions is sufficient ly~ poor that nothing additional is
really lost by resorting to the app roximate , one—dimensional integ ral
equation. Once grade. of 5 percent or more, or terrain futures with
radius of curvature of 1 km or less are encountered, the one—dimen— 

- -

sional equation might as well be used, since the accuracy of the

stationa ry phase integration is no worse that that of the other
approximations .

INTEGRAL EQUATION FOR SMOOTH • ROUND EARTH
Equation (8) can be used to calculate V for th. case of a smooth ,

round earth provided that the propagation path does not exceed a mega—
meter or so. As shown by Eq. (10), the errors caused by departure of
the earth’s surface from the plane z.O can be substantial for longer
propagation paths. Such errors can be avoided by rederiving the integral
equation in spherical coordinates, and using the radial component—rather
than the s—component——of the Hertz potential. ha this instance, the

• error terms I and lila in Tab le 1 vanish, whereas the term ITh is extre—
maly small for R

0 
— a. The result is that an integral equation can be

obtained that is essentially as accurate for a uniform spherical earth
as is Eq. (8) for a uniform plane earth. In addition, this “spherical~’
integral equation provides a consistent basis of comparison with results
calculated using the residue series, which rigorously accounts for a
spherical earth.

*The resulti ng one—d imensional integ ral equation is

*See Appendix C for detailed derivation . 

~~~~~~-•-- —---- --- - ~~~~~~~ - - -_- -~~~~~~~~~~~~~~ - - - _-- •_ - •~~~~~~~- - _
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W(a 0) — 1 [k]
h/2 1/4/

0 
W(s) [ in~~~~ 

( 

sin sla 
s~_s)1f 2]

o sin s0/a sin 2.

+ sin 
~:‘i 

2~~a [sin s/2a- sin s0/2a+ sin 
s~;sj 

, (11) 
- 

—

where s and denote great—circle distances on the earth’s surface.

By using r
0 

— 2asin s0/2a, etc., in the exponent of Eq. (11), and
noting that

5~~~53r2/3u — sin[ 2a I

it follows that Eqs. (8) and (11) agree to the extent that the approximation

so x0
sin

~~~
m
~r

is valid; i.e., the fractional. disagreement between Eq. (8) and Eq. (11)

is of order (s0/a) 2
, which arises because Eq. (8) is subject to errors

of the order of magnitude indicated by Eq. (10) , whereas Eq. (11) is not.

_ _ _ _  ~~-•~--~•- ~~~~~—-~~~~~~~
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Ill. NUMERICAL RESULTS FOR A UNIFORM, SPHERICAL EARTH

Equation (11) (p. 11) is the most accurate form of the one—dimensional
integral equation for a smooth , spherical earth , and is therefore solved
numerically to obtain the results given in this section . Specifically ,
the attenuation function, W, is computed as a function of distance for

frequencies between 20 kliz and 200 kRz, and conductivities between
4 ahos/m and 2 x 1O~~ ishos/in. (Appendix D outlines the numerical methods
used.)

Although somewhat less accurate than Eq. (11) for a uniform , spherical
earth , Hufford ’s integral equation (Eq. (8)) is convenient for analyzing
propagation over irregular terrain. Accordingly, as a partial check on
relative accuracy , we also solve Eq (8) (p. 6) numerically and compare
the results with those obtained from Eq. (11) . • In solving Eq. (8), we

used the full expressions for r0, r1, r2 , and 3r2/3n (e.g.,  r0 2a sin s~/

2a, etc.) rather than the expression in powers of s/a ~ x/a used in
Huf ford’s (1952) example.

As an accuracy check on both Eqs . (8) and (11) , detailed comparisons
with results given for the residue series by Wait and Hove (1956) are
made. Care must be exercised in making these comparisons, because we
have def ined the attenuation function by (see Eq. (C—9))

- 

*(s0
)oc W (s

0
)e ° , 

• 
(12)

whereas, a different attenuation function, W, is defined by

iks
*(s0)oc W(s 0)e 0 

, (13)

in the residue series. Thus, sinc, the Hertz potential , ~~ , must be the
same in both trea tments , the phase of V given by Wait and Howe must be

• corrected by a factor

k(s0—r 0) — k (s0
_ 2a sin~~~) 

, (14)

—- •---- ---•  



~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

13

before comparison with our results. This adjustment in the residue series

results has been made in the comparisons given below.

To make the comparisons as quantitative as possible, we use a digital
rather than a graphical format. Tables 3 through 16 give the results;

the number of significant figures given corresponds to the nwnerioal*
accuracy that we used in solving Eqs . (8) and (11). The results labeled
“spherical m t. eq.” correspond to Eq. (11); those labeled “Ruf ford m t .
eq. ” correspond to Eq. (8); those labeled “residue series” are taken

from Wait and Howe, adjusted according to Eq. (14). Following Wait and
Rowe, we used an effective earth radius of 4a/3 (e.g., 8500 km) to account
for atmospheric refraction. The sensitivity of the results to the choice

of ef f ective radius, which is crude at low frequencies, is examined below.
For purposes of comparison with Wait and Howe, we used ~ — 0 in the cal-
culations, but do not advocate doing so in general. Also , the rather
unusual distances at which the results are given were chosen so that

comparison with Wait and Howe could be made.

We discuss first the results at 100 kHz, since this frequency is

of more practical interest than the others. Tables 3 through 6 give

these results, and show that both the Bufford equation and Eq. (11) agree
with the residue—series results to within one tenth of a degree of phase
for distances out to 600 kilometers. To put this accuracy in context ,
note that , at 100 kliz , one tenth of a degre. of phase corresponds to a
distance of less thw~ a meter. Moreover , even this minute disagreement
is due to roundoff, and would have been smaller had more significant

f igures been presented in the tables .
At distances of 1200 km or more , small—but noticeable—differences

appear between the results of Eq. (8) and Eq. (11) and the residue series .
Equation (11) agrees somewhat more closely with the residue series than
does Eq. (8). This behavior is to be expected, because Eq. (8) is

accurate only to order (s0/a) 2, which becomes appreciable (0.08 at 2400
km) at the larger distances. We have no way of Iotowing whether the

disagreement between Eq.(11) and the residue series at 2420 Ion (Table 3)

*Numerical accuracy pertains to the precision of the methods used
to solve th. equations, and has nothing whatever to do with the accuracy
of the equat ions themselves, which is discussed in Sec. II and Appendices
A and B.

I 
_ _  _ _ _ _ _ _ _ _ _

- --4
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Tab~e 3  
-

W AS COMPUTED FROM EQ. (11) FOR f 100 kHz AND a = 4 mhos/m

Distance ( kin ) 60.6 121 242 606 1211 2420

ResIdue se~ies 2.0 4.3 10.9 47.8 199.5 1148.2

eq 2.0 4.3 10.8 47.8 199.2 1151.8

Difference 0 0 0.1 0 0.3 (3.6)

Anipiltude w 
0.983 0.952 0.869 0.576 0.223 0.024

~~~~~~~i
W
jnt eq 0.982 0.951 0.868 0.575 0.223 0.023

Difference O,~O1 0.001 0.001 0.001 0 0.001

Table 4

W AS COMPUTED FROM EQ, (8) FOR f = 100 kHz AND a = 4 mhos/m

Distance ( kin) 60.6 121 242 606 1211 2420

Residue~s~~ies 2.0 4.3 10.9 47.8 • 199.5 1148.2

2.0 

- 

4.3 10.9 47.9 198.8 1140.6

Difference 0 0 0 (0.1) 0.7 7.6

Pinplltude W 0.983 0.952 0.869 0.576 0.223 0.024

-

• 

~~~~~~~~~ eq 
0.982 0.951 0.868 0.575 0.222 0.026

Difference 0.001 0.001 0.001 0.001 0.001 (0.002)

L _ - — -
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Table 5

W AS COMPUTED FROM EQ. (11) FOR f = 100 kHz AND a io 2 mtios/m

Distance (kin) 60.6 121 242 606 1211 -

• 

. 
R:sidue~s:~~es 20.1 

— 

30.1 47.7 109.2 297.0

~~~~~~~~~~ 
~~~~~ 20.1 

— 

30.0 47.6 109.2 296.9--

Difference 0 0.1 0.1 0 0.1

AinpF ltude W 0.969 

— 

0.927 0.828 0.531 0.206

Miplitude W 0.969 0.927 0.828 0.531 0.206Spherical m t  eq 
________ ________ _________ _________ ________

Difference 0 0 0 0 0

- Tabl e 6

W AS COMPUTED FROM EQ. (8) FOR f = 100 kHz AND a io 2 mhos/m

Distance (kin) 60.6 121 242 606 1211

- - 

Residue ~~~ies 20.-I 30.1 47.7 109.2 297.0

~~~~~~~~~~~~ 20.1 30.0 47.7 109.3 296.9

Difference 0 0.1 0 (0.1) 0.1

A
~~l~:~

e
s
%
~ries 0.969 0.927 0.828 0.531 0.206

~~~~~~~~~ eq 0.968 0.926 0.829 0.531 0.206

Di fference 0.001 0.001 (0.001) 0 0

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Table 7

W AS COMPUTED FROM EQ. (11) FOR f — 20 kHz AND a 4 mhos/ni

Distance (kin) 60.6 121 242 606 1211

Phase W (deg)
Residue series 0.6 1.6 4.2 17.5 61.6

Phase t’~ (deg)
Spherical m t  eq. 0.6 1.5 4.1 17.4 61.5

Difference 0 0.1 0.1 0.1 0.1

Miplitude W 0.992 0.978 0.939 0.779 0.497

MiplitUde W 0.991 0.977 0.937 0.777 0.495

Difference 0.001 0.001 0.002 0.002 0.002

Table 8

W AS COMPUTED FROM EQ. (8) FOR f 20 kHz AND a = 4 mhos/m

Distance (kin) 60.6 121 242 606 
• 

1211

Pha se W (deg) 0 6  1 6  4 2  • 7~ 
-

Residue series . . 1 .-. 61.6

PhaseW(d eg ) 0 6  1 6  4 2  175Huff ord m t  eq • 61.9

Difference 0 0 0 0 (0.3)

~~~~~
C
s~ries 0.992 0.978 0.939 

- 

0.779 0.497

eq 0.992 0.977 0.938 0.778 0.495

Difference 0 0.001 0.001 0.001 0.002 

-- ----—- —-—-——__ j
~~~~~~~~~~~

_ _ _ _ • _ . _ ~~~~~_~~~~_ • ~~~ _~~~~~ • _  • • •
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Table 9

W AS COMPUTED FROM EQ. (11) FOR f 20 khz AND a — io 2 
~~os/m

Distance (km ) 60.6 121 242 606 1211

Phase W (deg)
Residue series 4.3 6.7 11.5 29.3 79.5

P
~~ :r~c~~

e
~~t eq 4.2 6.7 11.4 29.3 79.3

Difference o.i 0 0.1 0 0.2

Miplltude W 
0.993 0.978 0.938 0.780 0.504

A
~~~~

t
r

t
i

W
in .t eq 0.991 0.976 0.936 0.778 0.502

Difference 0.002 0.002 0.002 0.002 0.002

Table -10

W AS COMPUTED FROM EQ. (11) FOR f 20 kHz AND a 1O~~ mhos/m

Distance (km) 60.6 121 242 606 1211

ResIdue s:~ies 12.5 
- 18.4 28.1 56.2 119.8

P
~~ :r~c~~e?~t eq 12.5 18.4 28.1 56.2 119.5

Difference 0 0 0 0 0.3

Amplitude w 0.987 0.967 0.920 0.750 0.477

~~~~~~~~~~~~ eq 0.987 0.967 0.920 0.749 0.477

Difference 0 0 0 0.001 0 

~~~— - -~~~~—~~~~~~~~~~ -~~~- - ~~~~-- -
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Table 11

W AS COMPUTED FROM EQ. (11) FOR f 50 kHz AND a 4 mhos/m

Distance (kin) 60.6 121 242 606 1211

Phase W (deg) 
- 1 2 2 8 7 1 30 5 117 5Residue series

Phase W (deg) 1 2 2 8 7 1 30 5 117 4Spherical m t  eq •

Di fference 0 0 0 0 • 0.1

Ampl i tude W  
• 

0.988 0.966 0.905 0.675 0.338

eq 0.987 0.965 0.904 0.674 0.337

Difference 0.001 0.001 0.001 0.001 0.001

Table 12

W AS COMPUTED FROM EQ. (11) FOR f 50 kHz AND a = io .2 
mhos/m

Distance (kin) 60.6 121 242 606 1211

Residue series 10.3 15.6 25.0 60.8 164.4

r~c~~1~t eq 
10.3 15.6 25.0 60.8 164.2

Difference 0 0 0 0 0.2

~~~~~~~~~~ 0.985 0.960 0.896 0.667 0.342

Spherical tnt eq 0.985 0.960 0.896 0.667 0.342

Difference 0 0 0 0 0

- ~~~~~~~~~~~~~~~~~~~~~ • . 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Table 13

W AS COMPUTED FROM EQ. (11) FOR f 50 kHz AND a 10~~ mhos/m

Distance (kin) - 60.6 121 242 606 1211

:1due~~:~~es 
30.8 44.6 66.4 126.5 263.5

Phas:W(deg ) 30.8 44.6 66.4 126.5 263.5

Difference 
- 0 0 0 0 0

Amplitude w 0.952 0.899 0.790 0.505 0.213

Spherical nt eq 
— 

0.957 
— 

0.903 0.795 0.509 0.211

• Difference (0.005) (0.004) (0.005) (0.004)
_j_ 0.002

- 
Table 14

W AS COMPUTED FROM EQ. (11) FOR f 200 kHz AND a 4 mhos/m

Distance (kin) 60.6 121 242 606 1211

R:sidue
~
s:
~

ies 3 . 4  7 . 0  • 17.0 77.3 350.9

Phas:W(d eg ) 3.4 7.0 17.0 77.4 351.1

• Difference 0 0 0 (0.1) (0.2)

Ainpl ttude W 0.976 0.932 0.820 0.462 0.130

A
~~~~

t
r

t
~~:i

W
int ~ 0.975 0.931 0.819 0.461 0.129

Difference 0.001 0.001 0.001 0.001 0.00 1

-

~~~ -~~~~~ -- -~ •- — - —~~~~~~~--- - - - - • -~~~~~~~~~ - • - - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - —--~~~~•- -
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Table 15

W AS COMPUTED FROM EQ. (8) FOR f 200 kHz AND a 4 mhos/m 
-

Distance (kin) 60.6 121 242 606 1211

R:sidue~s:~ es 34 7.0 17.0 77.3 350.9

Huff ord int eq 3.4 7.0 17.0 77.5 353.9

Difference 0 0 - 
0 (0.2) (3.0)

~~~~~~~~~~~~ 0.976 0.932 0.820 0.462 0.130

eq 0.975 0.931 0.819 0.461 0.129

Difference o.ooi•  0.00 1 0.001 
• 0.001 0.001

Table 16

W AS COMPUTED FROM EQ. (11) FOR f — 200 kHz AND a io.’2 mtios/m

Distance (kin) 60.6 121 242 606 1211

ResIdue s:~ies 
39.5 • 58.1 89.8 199.0 

- 

546.7

r~c~1~t eq ~~~~~~~ 58.1 89.8 199.0 544.7

Difference 0 0 0 0 2.0

~~~~~~~~~~~~ 
0.921 0.834 0.668 0.307 0.068

AmplitUde W 0.922 0.836 0.670 0.307 0.066

Diffe~ènce - 

(0.001) (0.002) (0.002) 0 0.002 

~~~~~~~~~~~~~~~~~ ~~~~~~~~ -- - - -

-

~~~~~~ - — - -——~~~ •- - • • -
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is due to the approximations made in this report, or numerical impreci—
sions in Wait and Howe’s results. Also, Wait and Hove did not give the

exact value that they used for the earth’s radius. However, even for

the worst case shown (a — 4 mhos/m, s — 2420 Ion) , the disagreement in
— 

phase is 3.6° , which corresponds to a distance of only 30 meters.

The remaining tables (7 through 16) further conf irm the general

• conclusions drawn above. For distances up to 600 Ion, the agreement

among Eq. (8), Eq. (11), and the residue series is virtually exact. For

greater distances, the agreement is still excellent but, as expected,

Eq. (11) agrees slightly more closely with the residue—series results

than does Eq. (8).
The results of. Tables 3 to 16 are sufficiently close to those of

Wait and Howe that a graphical presentation here would add nothing new.
Wait and Hove, however, did not present results for propagation over ice,

nor were they able to obtain satisfactory convergence of the residu e
series for a — ~~~ mhos/m and frequencies of 100 kHz and 200 kHz. For

these conditions, therefore, we present graphical results (Figs. 1

through 4).
Figure 1 gives the amplitude and phase of W for a frequency of

100 kRz and a ground conductivity of 10~~ mhos/m. Results are shown

for both the “4/3” earth used by Wait and Howe, and a “normal earth” of

radius 6372 Ion. The results for these two assumed earth radii agree

quite closely, although noticeable differences do occur at ranges of

several hundreds of kilometers. For example , at a range of 600 km,

the selection of effect ive earth radius can inf luence the calculated
phase by more than 20 degrees, which corresponds to a position uncertainty
of about 170 meters. Since the use of an effective earth radius to

account for atmospheric refraction is crude, this 20—degree difference

between the “4/ 3” and “normal” earths must be regarded as a sort of
uncertainty, which far exceeds the mathematical uncertainties associated

with Eqs . (8) and (11). In other words, the accuracy of the equations

seems to be far better t han this input to the equations .
Figure 2 gives the amplitude and phase of W versus distance for a

frequency of 200 lcHz and a — 10~~ znhos/m; and Figs. 3 and 4, the amplitude
and phase of W for various VIS/ TS frequencies , and electrical properties 

— - -_ - -__ • _ - - __ -_ - -~.- - -—- --- ----—— ----- --_ -- —--~-•
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corresponding to nominal Greenland ice (e.g., K — 6, and a — 2 x 10~~
mhos/m). Given the poor accuracy of the impedance boundary conditions
for low conductivity (Table IA), the precision of the results in Figs. 3

and 4 is not high. As expected, Figs. 1 through 4 show that the attenua—

tion and phas e shift increase as the frequency increases and as the
ground conductivity decreases.

~
_ v_
~~

_ _ i _ .~
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IV. CONCLUSIONS

For a smooth, uniform earth, Huf ford’s one—dimensional integral

equation gives essentially exact agreement with the results of the resi-

due series for frequencies between 20 kHz and 200 klIz, and propagation - -
distances up to several hundreds of kilometers. For propagation dis—

tances greater than 1000 km to 1500 kui, the accuracy of Ruf ford ’s equation

degrades somewhat, and a modified one—dimensional equation——expressed in 
-

polar coordinates—provides slightly better agreement with the residue
series.

For a nonuniform earth having terrain undulations, the two—dimension-
al integral equation exhibits errors due to: 1) assuming that the Hertz
vector is essentially normal. to the surface; 2) use of impedance boundary

conditions . The one—dimensional integral equation incurs additional

errors due to the approximate ~valuation of an integral over the coordi-

nate transverse to the propagation path.

For ground conductivities greater than about io 2 mhos/ni , or for
pathlengths less than about 100 Ion, the two-dimensional integral equation
is inherently much more accurate than the one—dimensional one, provided
that the earth is fairly smooth. However, this additional accuracy could
be unnecessary , because—as was the case for the perfectly smooth ,

• spherical earth—the accuracy of the one—dimensional equation could be
adequate. -

For ground conductivities less than about 1O~~ aihos/m, or for rela-
tively roug h terrain , the inherent accuracy of the two—dimensional

equation is really no better than that of the simpler one—dimensional
version. This behavior occurs because errors due to the assumption of

impedance boundary conditions and a normally oriented Hertz vector are

at least as large as those due to the approximations made in reducing the
• two—dimensional equation to the classical one—dimensional form. ~lore

specifically, for these unfavorable terrain characteristics, the accuracy

of the two—dimensional equation is degraded to the extent that no

additional penalty is paid for performing the approximate transverse
integration.
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Appendix A

ACCIJRACY OF IMPEDANCE BOU~4DARY CONDITIONS

Use of impedance boundary conditions (Eq. (4), p. 4) is essential to

the derivation of the integral equation for the groundwave attenuation

function. Therefore, the accuracy of even an exact solution of the full—
fledged two—dimensional integral equation (Eq. (7), p. 5) is no better

than the accuracy of the impedance boundary conditions. The applicability
of these boundary conditions has received detailed attention by numerous
authors (e.g., Rytov, 1940; Leontouich, 1944; Brenvner, 1958; Fsinb.rg,
1959; Senior, 1961), and the details of their treatments need not be
repeated here. However, to quantify the inherent accuracy of Eq. (8)
for the frequencies and terrain of interest here, this appendix briefly
s~~ arizes the formulas for the correction terms to the impedance

approximation.

Impedance boundary conditions are accurate for highly conducting,
uniform media having flat boundaries. Errors are thus incurred if 1) the
medium is imperfectly conducting, 2) the electrical properties of the

medium are spatially nonuniform, and 3) the boundary of the medium is not

flat. We consider each of these errors below. -

ERRORS DUE TO FINITE CONDUCTIVITY
Validity of impedance boundary conditions rests on the fact that for

a highly conducting earth, the refracted wave is, according to Snell’s

law, propagated in a direction nearly normal to the earth’s surface.

Even for a plane earth, deviation of the wave normal in the earth from

the normal to the surface causes computational errors. Rytov (1940)

and Leontov ich (1944) showed that , for a vertically polarized wave and

a uniform plane earth, the fractional error* incurred by use of impedance

boundary conditions is of order

2 ~i/n
e ~ 

(A—i) -

*t~Practiona.l error” is defined as the ratio of the neglected terms to
the retained term in a series representation.

L
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where we have assumed that >> ic~ where ic is the dielectric -constant

of the ground. For situations where a/cu e0 is not much greater than cc ,
the error is of order 1/ic. Since cc is only of order 10 or less for most
types of ground, Eq. (A—].) applies for all situations where the accuracy
of impedance boundary conditions is better than about 10 percent.

To quantify the error term (A—i), we give its numerical values for
conductivities and frequencies of interest in Table Al. These values -

show that , for most cases , use of impedance boundary conditions is valid
in the sense that the fractional error incurred is much less than unity;
i.e., the percent error is no greater than about 10 percent. If very

high accuracy—say, 1. percent (fractional error of lo
_2
) or better—is

required, however, the impedance boundary conditions are inadequate in
the 20 kBz to 200 kflz range for Greenland ice , which has a conductivity
of about 10~~ shoe/in.

Table Al

VALUES OF we0/a FOR VARIOUS FREQUENCIES AND CONDUCTIVITIES

a (mhos/m) 2 3 5
f(]~fl~) 

4 10 10 10

20 - 2.8 x 10~~ 1.2 x ~~~ 1.]. x ~~~ 1.1 x 10 1

50 6.9 x 1O~~ 2..9 x 10 2~9 x ~~~~~~~~~~ 2.8 x 10~~
— 

100 1.4 x io—6 ~~~~~~ x 10 5.6 x iO~~ 5.6 x 10~~
200 2.9 x icr 6 1.1. x 1O~~ 1.2 x 1&2 1.2

ERRORS DUE TO SURFACE CURVATURE
The errors caused by curvature of the boundary have been calculated

by Rytov (1940) and Senior (1961). Physically , th. validity condition
is that the local radius of curvature , R 0, of the surface be large com-
pared with the skindepth of the wave in the earth. Mathematically, the
expression for the fractional error incurred by using impedance boundary
conditions in the presence of a curved bounda ry is

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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(,rii0af)~~~
2/R0 . (A—2)

To quantify this error term, Table A2 gives values for the expres sion
(A—2) for various conductivities and frequencies and R0 — lO3m. One way
to interpret Table A2 is that the values shown are the fractional errors

due to hills (for example) having a radius of curvature of 1. km. The
error caused by hills with a 100—rn radius of curvature would be 10 times
as large as shown in Table A2 , whereas that due to hills with a 10—km

curvature would be one tenth as large .

Table A2

VALUES OF (w~0af)’”2/R0 FOR VARIOUS CONDUCTIVITIES

AND FREQUENCIES AND R0 - j O3m

—2 —3 —5
f(]~R )  4 10 10 10

20 1.8 x lO~~ 3.6 x io
_2 

1.1 x io~~ 1.1

50 1.1 x i0~~ 2.2 x 10~~ 7.1 x io 2 7.1 x 10~~
100 - 8.0 x ~~~~~~~~~ 1.6 x L0 2 5.0 x 10~~ 5.0 x 10~~

200 5.6 x lO~~ 1.1 x io
_2 

3.6 x 10 2 3.6 x 10
_i -

Table A2 also shows that , with regard to curvature effects, the

accuracy of the impedance bounda ry condition degrades as the frequency
decreases. This behavior is different than that shown for finite—con-
ductivity effects (Table Al) , where the accuracy degrades as the fr.—
quency is increased. Thus, if the frequency is too high, the impedance
approximation fails because the ground refractive index is too small to
refract the wave into a nearly normal direction; whereas if the fre-
quency is too low, th. approximation fails because the skindspth can

becom. comparable with the radius of curvature of the surface. Comparison 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~- - - - - -
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of Tables A]. and A2 shows that , except for very smooth ground, curvature

effects induce larger computational errors than finite—conductivity
effects.

The errors shown in Table A2 apply where the entire propagation path
is characterized by undulations having characteristic dimensions of a

kilometer, and would be smaller if only part of the path contained such
irregularities. Also, so long as the fractional. errors shown in Table Al
are less tb in a few tenths, it is better to account for surface undula—
tions using the impedance method, than to neglect them entirely . On
this basis, we estimate that for a f requency of 100 kEz , and the average

ground (a — to lO 2 mhos/rn) , the impedance method of treating curved
terrain should be useful, provided that the characteristic dimensions of

the undulations are at least 100 meters. For smaller values of R0, the

error terms become comparable with the retained terms.

ERRORS DUE TO NONUNIFORN ELECTRICAL PROPERTIES
Rytov (1940) , Leontovich (1944) , and Senior (1962) have evaluated the

errors incurred by using impedance boundary conditions for media having

nonuniform electrical properties. Specifically , for cc and a that are 
-

functions of x, y, and z, where z is the vertical coordinate, they showed
that the fractional. error is given by

1 3sS —1/2 r~ aal; i; ~~
‘o~°~ L 1J -

Since (,T110fa)~~~
”2 is simply the skindepth of the wave in the ground, the

error term (A—3) will, be small if the conductivity undergoes only a small
fractional change within a ekindepth of the surface. The expression (A—3) -
is obviously extreme ly small for seawater because the sk.indepth is small
and the medium is nearly uniform. At a frequency of 100 kRz, we see—by -

multiplying the values in Table A2 by 1000—that the skindepth in normal

ground is several tens of meters . Thus , for Eq. (A—3) to be small, the
ground must be nearly homogeneous to a depth of tens of meters . Precise
evaluation of Eq. (A—3) must use data on shallow conductivit y—depth
profiles for terrain of interest.

---— -~~~- - - - ~~~~ —--- - - - -~~~~~ —~~~~~~- 
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As pointed out by Senior (1962) and Leontovich (1944) , the condition
(A—3) depend s only on vertical variatio ns in conductivity, even through
a was assumed to have lateral inhomogeneities as well. Thus, to first
order, nonuniformities in electrical properties introduce errors only

to the extent that the wave can penetrate to a depth where the con—
duceivity departs from its surface value. Errors du. to lateral non—

‘ uniformities are of higher order , and are appreciabl , only when, the
quantity 

-

(A-4)

is very large ; e.g., at a coastline .
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Appendix B

VALIDITY CRITERIA FOR ONE-DDIENSIONAL INTEGRAL EQUATION

ApplL...,~~on of impedance boundary conditions and Green’s theorem
leads to the following type of integral equation for the attenuation

function, W(P )

W( P) — 1 +J t
2QW (Q)K(Q ,P) . (B—i)

In Eq. (B—i) , the integration is taken over the surface, A, of the earth,
Q is an integration point on this surface, and P is the receiver point ,
which we assume is also on the surface. By making certain approximations ,

the two—dimensional integration over the surface, A , can be converted into
a one—dimensional integration along the terrain between transmitter and
receiver • This append ix determines the accuracy of these approxi mations .

The detailed form of the right—hand side of Eq. (B—i) depends- on
the coordinate system used. However, the validity criteria for the

approximate integration of the right—hand side of Eq. (B—i) do not depend
on the coordinate system. Therefore, to keep the algebra as simple as

possible, we establish the accuracy of the approximate integration in

rectangular coordinates. Appendix C rederives the integral equation in

spherical coordinates, which are more natural to propagation over a
spherical earth.

Consider a rectangular coordinate system with the trans mitter at the
origin, and with the plane defined by z — 0 orien ted perpendicular to the
vertical electric—dipole transmitting antenna . We let the deviation of

- - the surface of the earth from the z — 0  plane be given by C(x,y) , and
assume the receiving antenna to be located in the vertical plane defined
by y .0 .  The integration point , Q, has the coordinates z, y, r (x,y) ,
and the following relationships hold:
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—1

— x~ + C0 — C(x0,0) , (B 2)

— x2 + y2 + C 2(x,y) , (3—3)

r~ — ~~0 -x~~ + y2 + (C0-c (x ,y~~
2 

, (3—4)

d2Q — dxdy (
~~
)

2 
+ (

~~
)
2 

-

. (3—5)

In rectangular coordinates , Eq. (B—i) can be written (see Sec. II or

Hufford, 1962)

r + r
( 2  1.k,r~{i 

2 _ i]
W( P) — 1+1 

d ~ F(Q) e , (3—6 )
j r r1r2A

where

F(Q) — 
2 W(Q) [6+ (~ +~~

_) !~.a] . 
- 

(B—i) 
-

By using the relationships (3—2) through (3—5), Eq. (1—6 ) can b. rewritten

2 
— 1]

W(x 0) — i+f dx f’ dyF(x ,y) e 0 
, (s..

~g)

where

r(x ,y) — W(x,y) 41+ (Lc)
2
+ (

~~,)2

.[6  +(i+tj ._)_
~~&1 . (3—9)

~ 

- - - — -
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Thus, to reduce Eq. (1—9) to a one—dimensional integral equation, our
task is to evaluate the integral

ikr0h(x ,y)
1(x) — J dyr (x ,y)e , (B—iO)

where

r + r3. 2 _ i  . (1—U)

For transmission paths much greater than A/2i- - (about 0.5 ~~ at 100 kHz) , -

kz0 >> i, and the integral (3—10) is of the classic form amenabl, to approxi-
mate evaluation by the method of stationary phases (e.g., Erdely i, 1956) .

At this point of the derivation, other authors (e.g., Hufford , 1952) have
correctly argued that the integ ral (1—10) is approximately given by the
stationary—phase formula, which is well—known and can be written down by
inspection. This formula is, in fact, the leading term in an asymptotic

series representation of the integral (1—10) . To quantify the accuracy of

this term, we must retain and evaluate the second —order correction terms.
We assume that h has a stationary point at ~ — y

~
, given by the equa*ion

- h’(y0) — 

~~ j y—y — ‘0 . (3—12)

Th. value of will be found below; but, for now, we need only assume that
such a stationary point exists. Because of Eq. (3-12), the power series
for It becomes

It” 2 It’” 3 It”” 4h+’~~ -(y—y0) ~~~~~~~~~~ 
+-~~-(y—y0

) + ..., (3—13)

where the prime denotes differentiation with respect to y, and all deri-
vative s are evalua ted at y — y 0. In th. conventional stationary phase
method , only the first two terms in Eq. (3—13) are retained—the others
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being cor’rsction terms that are small if >> 1. We retain these higher—
order terms and assume—subj ect to a postsriori justification—that they

are small enough to permit the following series expansion of the exponent
in Eq. (B—lO) :

ikr0h(y0) ikr0h” (y_y o)
2/2

1’~~~~~0 [h <y_y 0) 3 +~~~~(y_y0)4]~ . (3—14) 
-

By similar reasoning , and subject to similar a p ost.riori justif ication,
we write

r r ’(x ,y0) (y—y0)~r(x,y) r(x,y0) L’4 r (x ,y0) j  
. (B—i5)

By inserting Eqs. (3—14) and (3—15) into Eq. (3—10), and noting that odd 
—

powers of (y—y~) vanish due to odd sy etry , the integral becomes - 
-

ikr0h(y0) ‘ ikr0
h”’(y—y0)

2/2
I(x).~ e r(x,y0) 

j  

dy e

ikr h”r’ ikr “• 
{~+[ ~i. + 24 

“}~
—
~o~1 , (3—16)

which can be ismediately integrated to give

1(x) m eri~~ e~~
X0 b0)

(l~~T
hnYh

l2
r(x ,y o)

• 
~~~~~~~ 2 — 1 , (B—li)
[ 2kr0

(h”) r 8kr0(h”) j  

-~~~~~~~ —-— -~~~~~~~~~~~~ —-
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where , again, a prime denotes y—differentiation and all, quantities are
evaluated at y y 0.

Aside frum the question of the limits on the x—integration, and one
or two minor constraints, insertion of Eq. (B—li) into Eqs. (3—10) and
(3—8), will give the classical one—dimensional integral equation (e.g.,

Hufford , 1952; Breainsr, 1958) provided that the following two conditions
are satisfiei i

h(y0) ~ h(O) ; r1(y0) ~ r1(0) etc., (1—18)

__________ 
r’

2 i-’ ~ , (B—i9a)
2kr0(h”)

a””
2 •c< i . (B—19b)

8kr0(h”)

Condition (3—18) simply states that the stationa ry phas. point, y0, is suf-
ficiently close to the plane defined by y — 0, that y

~ = 0 may be sub—
stituted in all, relations. This condition results in an integration along
the line between transmitter and receiver. Conditions (3—19) require
that kr0 be large , which is the validity requir ement for the stationa ry
phase integration. To quantify the accuracy of these approximations, we

further simplify and evaluate the correction terms.
By inserting Eq. (3—11) into Eq. (3—12) , performing the differentiation,

and using a perturbation expansion , we obtain the following equation for
• the stationary phase point:

(r (C0— C ) + r  C)C ’1 
+ 

2 
. (3—20)

r1 
r2 y ’~0

If the transver se derivative of the terrain contour , ~~
‘, vanishes at y .0 ,

I then — 0, and we recapture the classical result that the integrand be -

evaluated on the line z-’ O, y — 0 .  In fact , Eq. (3—20) shows that the

_ _ _ _ _ _ _ _ _ _ _ _  - - - - - ______
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stationary point is displac ed from the line z - 0, y — 0 by an amount pro-
portional to the lateral gradient of the terrain contour , 

~~
‘, evaluated

on the line between transmitter and receiver.
It follows from Eq. (B—li) that the phase of 1(x) is governed by

r0h(y0) — r1+r2— r0 . (3—21)

By using Eqs. (3—2) through (3—4), and keeping leading terms in a power
series expansion of r1, r2, and r0, it follows that

y0 + C y0 + (c
0

—c) c
0• r0h(y0) ~ + 2(x0—x) — (3—22)

for 0~~, x < x 0.

F From Eq. (3—20) , it follows that the order of magnitude of y0 is ~~~~
‘,

because r1/ Cr1 + r2) and - r21 (r1 + r2) are of order of unity. Therefore,
the fractional phase error incurred by sett ing y0 0 is

~~~~~~ 0 
y -  )

2] . 

- 

(3—23)

To the same order of accuracy, the y—derivative term in Eq. (3—5) may also
be neglected .

Tedious, but straightforward differentiation of h(y), and insertion
of y — 0, show that the error incurred by neglecting the terms given by
(3—19) is of order

“ ft
it 0 (1/kr,,) . (3—24)

8kr0(h”) ’
y — 0  

—- -~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~~~~ - --- ~~~~~~~~ --~~~~~~~ _ _ _  __
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It also follows from direct differentiation that , to the accuracy indicated

by Eqs . (3—23) and (3—24) ,

r0h”(y”O) — 
1

r ~ 
‘ 

(3—25)
r1 2

whenc e Eq. (3—1,7) can be written

1(x) — ewi/4e
:I
~”~1•~~2

_r
0) 

[k :1+r 2] 
r (x ,y0) , (3—26)

where all quantities are evaluated at y — 0.

Comparison of Eq. (3—26) with Eq. (3—10) shows that th. stationary—

phase integration is equivalent to multiplying the integrand of Eq. (3—10)

by a lateral distance, ~y, whose magnitude is given by

~y {k~Z~~2)]~

2 
[(r

~~~~~
)]

h/2 
(3-21) -

which is essentially the width of the first Fresnel zone. Therefore, the

stationary—phase integration is physically equivalent to retaining con—

tributions from transverse distances of the order of a Fresnel zone.

Satisfaction of condition (3-18) (or , equivalently , if the error term

(3—23) is s.aU) guarantees that the terrain will not vary appreciably

across this zone . Combination of Eq. (3—26) with Eqs. (3—8) through

(3—U) gives the following integral equation for the attenuation function

W(x0) - 1_ ._Wh/ 4 
(

~~~~~

)

1I2 j d x i  ~~/ 3X) 2 [r1v2 1 + r 2)I
ik(r1+r2 r0) ~W(x) e 

1~~~~~ i 
(3—28)

11L 
-

_____
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Eq. (3—22) shows that the exponent , k(r
3.+r2—r0), is of order kC 2/x pro-

vided that 0 < x C x0. Thus, for terrain irregul arities that are com-
parable to or smaller than a wavelength, the exponent in Eq. (3-24) is

small and oscillates slowly . For x c 0 or x > x0, however, the exponent
is of order 2km or 2k(x—x0), which oscillates very rapidly. Thus , to
within the same order of accuracy as the stationary—phas. integration

• (s.g., Eq. (3-24)), the integration limits in Eq. (3—28) can be taken
equal to 0 and x0.

Use of these finit. limits in the z—intsgration converts Eq. (3—28)

into virtually Huf ford’s classic form. However, Huf ford made two addi-

tional approximations, which—although consistent with those describe d
above and in Sec. It—are not rea lly necessar y . First, Kuf ford assumed
that 42Q — dxdy, which is tantamount to neglecting (ac/ax) 2 in Eq. (3-28).
second, he assumed that terrain irre gularities were sufficiently gentle

that, except in the exponent , it is permissible to set

ro xo

r1 x
(3—29)

r 2 x0 — x  .

The approximation (3-29) is accurate to order c~ixg. To within the accuracy
of these approximations , Eq. (3—24) becomes Eq. (8) (p. 6), which is ideutcal

to Eq. (II) in Huf ford’s (1952) original paper. 
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Appendix C

INTEGRAL EQUATION FOR UN IFORM, SPHERICAL EARTH

Equation (8) (p. 6) can be used to calculate the attenuation function
for a smooth, spherical earth of uniform conductivity, a. Somewhat better

accuracy could be obtained by using Eq. (B—27) (p. 40) and reta ining the
full expressions for r

0
, r1, and r2, rather than the approximate ones

given by Eq. (3—28) (p. 40) . In each instance, the curvature of the earth
is accounted for in the function C (x) , which represents the deviation of
the earth’s surface from a plane.

The above co ients nothwithstanding, certain of the procedures and

approximations used in Appendix B to derive Eq (3—28) were necessitated
by the -fact that the shape of the surface was not specified. If one

assumes a smooth, round earth at the outset , a much more direct—and
slightly more accurate—derivatio n of the appropriate integral equation
can be given . The major improvement is that spherical coordinates are
used, thereby treating the earth s curvature in a natural way rather than
as a perturbation to a plane surface.

In spherical coordinates (r ,e ,~ ), the three field components generated
by a radially oriented (vertical) electric dipole located at r — a, 6 — 0,

are given by

— {k2 +3 2/a r 2
l {r* J ‘ 

, (C—i)

2

• 
He — (r~j ,] , (C—2)

aid

— ic~i a*/ae , (C—3)

where £ is the complex dielectric constant and the Hertz potential , $‘ ,

satisfies

(V2 +k 2
)* — 0 , (C—4)



_ _ _  - -~ - --~~ --~~—-~~ - - -
~
-
~1

1
except at the transmitter location. In the above equatio ns, r is the
distance from the origin—in this instance, the center of the earth—and
therefore differs qual itatively from r0, r1, and r2, which are linear
distances between transmitter and receiver, transmitter and some integra—

- tion point , and integ ration point to receiver .
Continuity of E and H at r — a  implies that

~~ £(r ’4,] — 

—

r— a  r a

Subject to the validity conditions for the impedance bounda ry condition s
given in Appendix A,

3/ar [r*] • (r~p~ if r c a ,

- g

and the boundary condition becomes 
-

(r~ ] —j k*5(rip] , (C—6)

which is simply a spherical coordinate version of Eq. (4) (p. 4).
Equations (C—4) and (C—6) may be used in conj unc t ion with Green ’s

theorem to obtain a two—dimensional integral equation . The steps are
identical to those used by Hufford (1952) for the plane earth, except
that here the volume is bounded by two disconnected surfa ces—one a large
sphere with a radius approaching inf inity , the other coincident with the
earth ’s surface except for an infinitesimal hemisphere abou t the receiver
location. The resulting integral equation is

*(r0) — 2*0 +~~~ [dA*(r1) e
t
~~2 E_

~~~+( l+
~~~

_ ) .
~~~]. 

(C—i) 

~~~~~ -~~~~-~~~~~~~~~ - •  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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where the integral is taken over the surface of the earth and is the
free—space Hert z potential .

We let

ikr 1
*0(r1) — Conat. e 

, (C—8)
- 

r~

and

— 2W(r1) *o(t.~
) (C 9)

where, as above, W denotes an attenuation function accounting for departures
from the situation where the earth is flat and of infinite conductivity. - -

- Insertion of Eqs. (C—8) and (C-9) into Eq. (C—i) gives the following inte— -

gral equation for W.

W(r0) — i+*J

’
dAW(rl) r~~2 

e 1~~~2
t~0

)

(C—b )

Equation (C—b ) is formally nearly identical to Eqs . (3—6) and (B—i) ,
the extra term in the square brackets of Eq. (C—la) resulting f rom the -

polar spherical coordinate system. For a smooth, round earth, however ,
explicit functional forms can be given for dA, r1, r2, etc., rather than
expressing them in terms of the unspecified terrain function , C, and its

derivatives. These function form s permi t the transverse part of the
• surface integral to be performed without having to use a full—fledged

stationary—phase approximation.
We thus write (after considerable rearrangement)

dA — a2sine de d$ , (C—il)

• 2a sinO0/2 , (c—12)

r1 — 2a sin8/2 , (c—13)

T1 I
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r2 — V’~~~a (1—cos e cos80 — sin6 sine0 cos,]
hh’2 

, (C—l4)

!:~ 
r a  

~~ ( 1—cosO cose0 — sine sin60 cos$ ]1~
’2 

, (C—l5)

— (C—16)
r

2
3r 2a

r a  -

I I
where (e~~0] and (e ,+] are the angular locations of the receiver and the

- integration point on the surface of the earth. Substituting Eqs. (C—li)

through (C—l5) into Eq. (C—b ) gives the following form for the integral
equation

ik 
1! rsine0I2l Z ika (sin O/2—sine /21

w(00) l+[r] /1 af dO sine w(e) Lsine/2 j e

, (C—l7.)

where

i/i ka ( A — 3  cos+ l
L f 2

z(k,O) — ~I d~ 
e 

1/2 • (C—iS)
- 

(A—B cos$]

and

A — 1—co sO cos60 , (C—19)

B — sinO sinO0 
. (c—20)

Note that although the earth’ s surface is azimuthally sy~~etric , r 2
depends on $ and a transverse integration (C—iS) must be performed .

~ 

—
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Equation (C—li) is much simpler , however , than a full—fledged two—dimen—
sionai. integral equation because the unknown function, W, depends only on
0. The transverse integral, I(k,O), depends only on known quantities and
could be tabulated via numerical integration, i.e., I(k,O) is a known
function of 0 that need not be determined as part of the solution process .

Further, note that the only approximation used to derive Eq. (C—17) is
the application of the impedance boundary conditions, and that numerical

solution of Eq. (C— 17)—in conjunction with numerical tabulation of Z(k,O)—
would give W(0) to the accuracy of the impedance boundary conditions .
However, as is evident from the close agreement of the numerical results
given in Sec. III with those computed by other authors using the residue

series, an asymptotic approximation to I(k,e) gives good accuracy, and
removes the need for numerical tabulation.

It is well—known, and was shown in Appendix B, that only the first
Presnel zone contributes significantly to the received signal , provided

that the surface contains no abrupt nonuniformities in either shape or

electrical properties. The angular width, ~4, of this zone is of order

~ (X/r ~ ]~~
2 

, (C-2l)

which is small provided that the transmission pathlength is at least several

wavelengths. Thus, subj ect to a p osteriori justification we use

cos$ 1. — $~ /2 , (C—22)

in Eq. (C—iS), which results in the following form of I(k ,o) :

£ ikav~I(2 (A— B~/B+$2 ]1~
’2

I /~71 I d+ C 
. (C—23)

(2(A—3)/3+$ ~ 
,2 —

Fur the r , since large values of $ are nni.mportant , the upper limit can be

changed from ii to , and Eq. (C—23) can be approximated by

~~~~~~~~~~~~~ -~~---~~ ~~~~~~~~~~~~
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ika1i(2(A—B)/B+$2]~~
’2

I m tim v’~7i I d$ ~ 2 l’2 cosb$ , (C—24)
b~0 I [2(A—B)/B+$ ]

which is of the standard form (Grads htsyn and Ryzhilc, 1985)

f 
d~ 

eLp’m~~~~
j 

cosb$ d$ - ~~~ (m~~p2_b2 )  ,

where the positive square root is taken and R~ is the Hankel function. It

follows that 
-

- 

I(k ,O ) ka (C—26)

or , after using Eqs. (C—l9) and (C—20) ,

I. = j t  15~~8~~~00ci(

I 
~~ ~~~~~~~~~ 

2 ka sin _
~_Q) ~~ > 00 . (C-27)

The argument of the Rankel function is kr 2 (see Eq. C—14), evaluated at

• — 0, and may be assumed large enough to use the asymptotic expansion of
the Hankel function. Thus , to order bike sine, substitution of Eq. (C—27)

• into Eq. (C— li) gives

I
_____  
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W(so) 
~~ - 

[k]

U2 -ti./ 4 
~a 

W(s) ~ (sin :~,iaistn~~~:)~

r 2~ka(sin s/2a— ein s0
/2a+ Isin (s—s0)/2a1)

d+sin~ ~~~ )je 
, (C—28)

where s denotes great—circle distances along the earth, and we have used

0—s/a , etc. For 
~~~~~~~~~ 

the integrand oscillates very slowly , as can. be
seen by the fact that the exponent vanishes to first order in s0/2a.

For 5> s~ , however , the integrand oscillates very rapidly, as can be seen
from the fact that the exponent is 2ik(s—s0> to first order in s0/2a.
Thus, we write for the final form of the integral equatcon for a smooth,
round earth

W(s0) {k]
] i2  

c iL W(5) 
[:

~~ c2
5a( 

(sO/:) smn(~~:))]

1 s —s 1 2S.ka(sin s/2a — sin s0i2a+ sin 
(s0—s)/2a)

~~6+ain( 
~a )je , (C—29)

which is Eq. (ii) on p. 11 of the main text. Th. correction terms to Eq.

• (C—].9) are extr emely tedious to derive , and are not really needed , because

the excellent agreement between numerical solutions of Eq. (C—29) and
available results from the residue series is an adequate accuracy check.
Nonetheless , we point out that by following step s analogous to Eqs . (3—13)

through (3—17), we find after considerable algebra , that the fractional
error of Eq. (C—29) is of the same order of magnitude as the error term
given by Eq. (3—24).

— - 
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Appendia D

NUNURICAL SOLUTION OF EQS. (8) AND (11)

L~ THOD 
-

Both Eq. (8) and Eq. (11) (pp. 6 and 11) are instances of the Volterra
integral equation of the second kind :

W(x) — g (x) + f  W(s)K(x ,s)ds . (D—1)

We solve this equation iteratively using the well—known, method of Picard .
Starting with the initial guess W

0
(x) — g (x) , successive approximations

U
1, 

A~~~, ... are found such that

W~÷1(x) - g(x) + 
/ 

W~ (s)K(x~s)ds (D-2)

0

Iteration continues until two successive approximations differ by less
than some specified tolerance. Volterra integral equations and their
solution by Picard ’s iterative method are discussed by Collatz (1960) .

The difficulty with the solution by Picard’s method lies in the
repeated evaluations of the integral in Eq. (D—1 ) . From Eqs . (8) and
(11), it is seen that the kernel, £(x.~,s), viewed as a function of s with
x fixed , is singular at the endpo~~cs of the interval (O ,x) .  Both Eq.
(8) and Eq. (11) can be rewritten in the form *

W(x) - g (x) + f  W(s)H (x ,s) ds , (D—3)
~ /x(x—s) -

*This procedure is possible for Eq. (11) because sin(s/2a) and
sin have only first—order zeros near s 0  and s—x .

- ~~~~~~~~~~~~~~~~~
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~~~~~

where H(x ,s) has derivatives of all orders . A Cheby shev—Gauss quadrature

— 
is used to evaluate the integral in Eq. (D—3). For each iteration , U1,
we take -

.

X W
1

(s)H(x ,s) n

is(z—s) 
ds — 

~~~~~~~~~~~~~~ f1
(s~) + Rt~ 

, (D—4)

where

f~ (s) — W~(s)H(x~s)

(D—5)

~~i 2 2 2n

and - - - - - - - - -

— 
2 

21T 
f(2fl)(~) 0~~~ <x . (D—6)n 2 n(2n) l

Here, Rn is the remainder term corresponding to the computational error
incurred by use of a finite number , n, quadratures . Note that this remainder
is zero , and the integration exact, when f is a polynomial of degree Less
than 2n. The Chebsyhev—Gauss quadrature is- described by Krybov (1962).

I~~LENENTATION
• The code used to solve Eq. (8) and Eq. (11) is written in FORTRAN .

The function W~, represented as a vector array of chosen length, maths—

mat icably corresponds to representing the successive approximat ions to -

the solution as a piece—wise linear function . The code user selects the
number and widths of the steps in the approximat ing piece—wise linear func— •

tion. Iteration according to Eq. (D—2 ) continues until a pair and W~~1
are found that satisfy the inequality

j Nmax

IE [w1 xN — W
j+t(x

N)]2 
½ 

(D~7)
3.

N 3. < T  ,
sax

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ — - - -  - - -~~~~~ -~~~
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where N5~~ is the number of values in the vector array approximating U,
x.~ is the value of x at the N

t
~ step, and T is a chosen tolerance. Thus,

our convergence criterion demands that the rms difference between two
successive iterations be less than the chosen tolerance.

Most of the results given in the main text are obtained with a
convergence tolerance of 1O~~, and were run on a CDC 7600 computer. The

running time required to calculate U as a function of distance depends
on the propagation pathi.ength, ground conductivity, wave frequency,

number of quadratures, Nmex~ and T. The running time tended to increase i -

as the frequency increased or the conductivity decreased . For example,
for T—1(f’4, ii sec of running time was required to calculate U out to a
distance of 2000 I~ for a conductivity of 4 shoe/rn and a frequency of
100 kliz. Reduction of the frequency to 20 kHz reduced the running time
to 8 sec ; but , for 100 kHz, decreasing a to 2x1(f’5 mhos/m caused 18 sec 

-
of running time to be required tocalculate U out to only 50 km. Of course ,
at 100 kllz, about as much attenuation occurs for 50 km of propagation over

ice (2x10’5 mhos/rn) as for more than 1000 km over seawater (4 shoe/rn).
Thus, the running time required to compute a given amount of attenuation
does not vary drastically.
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